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Abstract  

Characterizing heptanes plus fraction in PVT analysis has been a complex problem since its first inception. In this 

publication, the author is reviewing available mathematical functions employed for this task, whilst pointing out 

advantages and weaknesses for each of them and proposing a new method that is capable of complex characterization. 

This publication addresses a new method that is capable of accurately characterize heptane plus fraction especially in 

discontinued areas where errors could leap up to 40%. The author modifies the natural logarithmic function to be used as 

an accommodation to discontinuities. The modified distribution provides better accuracy in modeling the discontinuities 

as a straight-line function, making them ideal for real gas condensate composition characterization. The new method is 

tested against several test data used by previous researchers and applied to 3 sets of field data. The results have shown that 

this new method is capable of lowering CPU requirement whilst making better accuracy for all test data. 
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INTRODUCTION 

 The increasing demand for condensate products has reached a new level in this industrialized era. It is 

important for producers to maintain a steady supply of gas condensates to fulfill the world’s need. However, 

producing from gas condensate reservoirs are not as simple as black oil or dry gas reservoirs. Its unique 

properties such as the retrograde condensation and loss of significant productivity at a certain dew point 

pressure make it impossible to apply general correlations based on simpler fluid. 

Characterizing heptane plus fraction has been a latent problem in gas condensate field of expertise. The 

correlations developed mostly are fitted for certain data sets only, making it prone to errors in other data 

sets. Several authors have pointed different continuous distribution models, but it is important to note that 

discontinuities of the composition are a recurring phenomenon in gas condensate PVT study. Therefore, 

this issue should be resolved in a manner that allows easy and rapid calculation. Spivey and McCain (2013) 

highlighted the importance of heptane plus characterization, especially related to the high rise of the liquid-

rich gaseous reservoir, not only in Northern America but also all around the world. They also highlighted 

the importance of heavy hydrocarbon constituent’s characterization in preliminary estimates before 

laboratory data is available, or when costly PVT testing are not available due to cost considerations and for 

comparison purposes, especially due to the fact that correlations related to gas condensate PVT are not as 

abundant as dry gases’ or black oil related correlations (Imo-Jack & Uche, 2012). 

LITERATURE STUDY 

Danesh (1998) and Ahmed (1989) pointed out the importance of characterizing compositions from a single 

carbon number (SCN) group for the sake of fluid characterization. In gas condensate reservoirs, proper fluid 

characterization should bring multiplier effects in the difficulty of production, field development, and 

surface treatment process design. However, it is a known field practice that extended composition of a gas 

condensate sample is not available experimentally due to technological constraints and economic 
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consideration, therefore mathematical models popularly known as “splitting schemes” are often employed 

(Mayrhoo and Hosein, 2014). 

There are several models available in the commercial equation of state simulation software that can be 

employed to extend the composition beyond measured heptane plus fraction such as Ahmed (1989), Danesh 

(1998), and Whitson and Brule (2000). However, there are only two models that are usually used which is 

the exponential model developed by Pedersen et al (1985) and three parameter Gamma distribution 

developed by Pearson (1895). The main assumption underlining these models is that the models can be 

applied to gas condensate systems as long as there is a continuous relationship between the pseudo-

component system and molecular weight. This assumption has been generated from observations in North 

Sea fields and expanded by Al-Meshari and McCain (2007) to several other data sets worldwide. 

The continuous model, however, endures in gas condensate PVT characterization until Hosein and McCain 

(2009) published a new study that points out discontinuities in several test data worldwide, specifically in 

SCN8 and SCN 13. This phenomenon has been proven to limit the utilization of continuous models as the 

discontinuities are extracted from more reliable experimental measures. 

In this publication, the author reviews the advantages and disadvantages of exponential distribution, three-

parameter gamma distribution function, and the four-parameter coefficient model from Mayrhoo and 

Hosein (2014) and the author will propose a new model based on natural logarithmic function to properly 

accommodate discontinuous function. 

Previous Models Employed on Characterization of Heptane Plus Fraction in Gas Condensate 

Reservoir 

Exponential Distribution Function 

The method was first suggested by Pedersen et al (1985) who observed that continuous exponential function 

can be model the relationship between mole percent expression as a function of molecular weight as 

log 𝑧𝑛 = 𝐴 + 𝐵(𝑀𝑛)… . (1) 

Where  

 𝑧𝑛 : composition of SCN group n, mole percent 

𝑀𝑛 : molecular weight of SCN group n 

 A, B : constants determined by the least square fit of experimental data 

The generally accepted model of a straight-line relationship is shown Figure 2. Utilizing this model, we can 

obtain the average absolute deviation between the predicted and experimental studies from twelve data sets 

is shown figure 3 and 4. We can observe that the model overpredicts the SCN8 group by more than 25%, 

whilst SCN 13 group is overpredicted by 30%.  

Attempting to compensate for this inaccuracy, Hosein and McCain (2009) argued that this model can only 

be applied if experimental data up to C20+ are available, making it a minimum seven experimental data to 

define discontinuities at SCN13 and beyond. Therefore, this scheme is more suited for predicting heptane 

plus component beyond the SCN 19 group. 

Three-Parameter Gamma Distribution Function 

This model is developed by Pearson (1895) and is utilized to characterize molar distribution as a function 

of molecular weight of pseudo-components as follow  

𝑃(𝑥) =
(𝑥 − 𝜂)𝛼−1 exp [−

𝑥 − 𝜂
𝛽

]

𝛽𝛼Γ(𝛼)
… (2) 
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The parameters represented by Greek Letters α, β, η are proposed by Whitson (1983) as defining distribution 

parameters.  

This model also works on the same assumption with the exponential distribution model, in which there is a 

continuous exponential relation between SCN composition and molecular weight, this occurs when the 

parameter α equals to 1. Al-Meshari and McCain (2007) used the value of η as 86.177, equal to the 

molecular weight of heptane, and applied this modification to predict compositions for twelve data sets. 

The Absolute Average Deviation obtained between experimental and numerical data has shown that the 

SCN8 groups were underpredicted by 25%, whilst the composition of SCN12 and above were overpredicted 

by 25%, implying that the model does not include discontinuities relationship at SCN8 and SCN13 properly, 

therefore Hosein and McCain (2009) suggested that extended experimental data up to C14+ are required to 

make this model a better fit. 

Two Coefficient Splitting Scheme 

This method was first derived by Ahmed et al (1985) based on the conclusion that the hydrocarbon systems 

tend to exhibit a molar distribution that is relative to the average molecular weight in the plus fraction. 

Ahmed et al (1985) described a marching technique, in which molecular weight data are calculated from 

experimental PVT data. Ahmed et al (1985) uses four computer-generated plots to receive a generalized 

coefficient for two segment relationships to calculate mole percent of a certain SCN group. 

Ahmed’s method was tested by Mayrhoo and Hosein (2014) for twelve samples of gas condensate PVT 

obtained in Trinidad, and the results yielded better performance compared the previous models, ranging 

from 8-18%, but the most important flaw in this method is the overprediction of SCN7 group by 23%, 

which implies that this method cannot be utilized for Trinidad condensates. 

Four Coefficient Model 

Mayrhoo and Hosein (2014) attempted to reformulate the flaws in Ahmed et al (1985) scheme by adding 

two more coefficients and dividing the PVT into four segments, to properly isolate the discontinuities, 

which results in a modified coefficient based on the pictures below. Mayrhoo and Hosein (2014) divided 

the segments as 

 Segment 1 is from SCN7 to SCN 8 due to the discontinuities whilst segment 2 is from SCN 8 to 12 

 Segment 3 is from SCN 12 to SCN 13and segment 4 is beyond SCN 13 

The marching technique employed by Ahmed et al (1985) is also used in this scheme, differing in more 

conservative values of the coefficients used for the condensate characterization. The scheme has been tested 

against twelve data sets from Trinidad condensates and yields better results, averaging  8% for all data tests. 

The four-coefficient model, however, has never been tested to data sets outside Trinidad condensates, 

therefore reducing its reliability for field uses around and presenting a lot of complications due to the 

abundance of coefficients to be accounted for. 

PROPOSED NEW MODEL 

Developments in statistics and modeling have encouraged many types of more sophisticated yet simple 

functions that can be employed to model complicated functions and natural phenomenon. After reviewing 

all the methods previously developed to characterize heptane plus fractions in gas condensate reservoir, the 

author decided to employ logarithmic like function to model the distribution of the heptane plus fraction as 

a function of molecular weight of the mentioned fraction. Experimental results from Hosein and McCain 

(2009) provided the basis of this research, as the distributions are linear in logarithmic scale, therefore the 

proposed distribution model that incorporates the exponential distribution is representative to this set. 
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The basic equation for the distribution will be defined as 

𝐶𝑛 = 𝑅 ln(𝑥) + 𝑆… (3) 

Where 𝐶𝑛 is defined as percent mole of a certain SCN number, as x is defined as mothe lecular weight of a 

particular SCN number. The constant A and B will be defined as a fine tuning for each approach to the 

distribution using the graphical method. 

Consider the distribution graphed by Hosein and McCain (2009) obtained a gas condensate well PL6 in 

Trinidad, using the following data 

 

Figure 1- Trends in Heptane Plus Mole Percent to Molecular Weight 

In this graph, it is seen that the graph itself can be divided into four sections of the trend line, as what 

Mayrhoo and Hosein (2014) did in his work of four coefficients model. Mayrhoo and Hosein (2014) 

however, use the normal graph of percent mole to molecular weight, assuming linearity of all the points 

plotted. This leads to inaccuracy due to the rounding of the function. Therefore, we propose a new plotting 

system, using natural logarithmic of percent mole to normal molecular weight. This results in a smoother 

graph and can be easily inferred as a natural logarithmic function. 

We, therefore, break down the graph into four sections, SCN7-8, SCN8-12, SCN12-13, and SCN13-19, as 

follows 
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Figure 2-SCN7-SCN8 Trend 

 

Figure 3- SCN8-SCN12 Trend 
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Figure 4-SCN12-SCN13 Trend 

 

Figure 5-SCN13-SCN19 Trend 

The plotted results have shown that converting the values into a natural logarithmic function would lead to 

better accuracy in modeling discontinuities due to the fact that the discontinuities form a straight line in the 

natural logarithmic function. 

MODEL TESTING 

In this section, several field data from Mayrhoo and Hosein (2014), Hosein and McCain (2009), Whitson 

and Kuntadi (2005), Katz and Firoozabadi (1978) and Hoffman et al (1953) will be used as a baseline study 

to determine the proper coefficients for each part of the graph as mentioned above. The values will then be 

averaged as a final model that will be tested against 2 sets of field data to determine its accuracy. 
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Table 1-List of PVT Data Used for Model Building 

Sample SCN7-SCN8 SCN8-SCN12 SCN12-SCN13 SCN13-SCN19 

R S R S R S R S 

PL1 1.673 -8.61 -0.028 2 1.12 -9.51 -3.48 15.21 

PL2 1.629 -8.69 -0.0271 2.21 1.39 -9.49 -3.476 15.409 

PL3 1.71 -

8.602 

-0.0276 2.18 1.32 -9.58 -3.462 15.388 

PL4 1.65 -8.58 -0.0289 2.11 1.22 -9.43 -3.501 15.89 

PL5 1.633 -8.54 -0.0283 2.19 1.29 -9.566 -3.402 15.602 

PL6 1.62 -8.67 -0.0282 2.16 1.349 -9.574 -3.459 15.527 

CL1 1.591 -8.51 -0.029 2.08 1.372 -9.601 -3.644 15.781 

CL2 1.6 -

8.533 

-

0.02871 

2.06 1.389 -9.544 -3.604 15.293 

CL3 1.613 -

8.601 

-0.0288 2.17 1.36 -9.53 -3.595 15.901 

CL4 1.588 -8.77 -0.0275 2.11 1.4 -9.501 -3.622 15.655 

CL5 1.593 -8.69 -0.0284 2.19 1.43 -9.522 -3.659 16.011 

CL6 1.632 -8.56 -0.0281 2.08 1.23 -9.573 -3.612 15.832 

K1/K4 1.688 -8.7 -0.029 2.21 1.28 -9.62 -3.78 15.21 

Ghawar 1.621 -8.89 -0.0294 2.2 1.25 -9.65 -3.733 15.292 

Al-Meshari 

1 

1.709 -8.65 -0.0279 2.11 1.301 -9.42 -3.56 15.398 

Al-Meshari 

2 

1.7 -8.59 -0.0276 2.18 1.34 -9.48 -3.819 15.481 

Pedersen 1 1.682 -8.73 -0.0284 2.16 1.39 -9.61 -3.321 15.982 

Pedersen II 1.675 -

8.712 

-0.0281 2.13 1.376 -9.64 -3.49 16.023 

Average 1.64483333 -

8.646 

-

0.02828 

2.140556 1.322611 -

9.54672 

-

3.56772 

15.60472 

 

After studying several data sets, the values of every A and B coefficients for every splitting of the SCN 

numbers are then averaged, resulting in values that can be used to model the Heptane Plus Characterization. 

The model is then tested using two sets of field data extracted from Ahmed et al (1985) which uses two 

data sets from North Sea Gas Condensates and Bazanan Gas Condensate reservoir. 

Results for the model testing is shown below, in which the predicted model gives promising results for 

modeling heptane plus fraction up to SCN 20+. The differences from the experimental procedures can be 

minimalized should there be more representative data to further enhance the model, as condensate 

compositions vary with regional deposition and properties of the PVT itself. The difference between the 

experimentally derived composition and the calculated is less than 3%, making it suitable for this model to 

be used as a tool for heptane plus characterization in condensate reservoirs. 
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Table 2-Results of Model Testing 

SCN 

Group 

North 

Sea 

Bazanan Calc. North 

Sea 

Calc. 

Bazanan 

Difference (%) 

Mole% North Sea Bazanan 

7 1.21 0.75 1.193 0.744 1.40 0.80 

8 1.1 0.76 1.079 0.771 1.91 1.45 

9 0.86 0.49 0.859 0.482 0.12 1.63 

10 0.68 0.31 0.682 0.313 0.29 0.97 

11 0.568 0.22 0.571 0.2172 0.53 1.27 

12 0.478 0.15 0.48 0.146 0.42 2.67 

13 0.407 0.12 0.405 0.118 0.49 1.67 

14 0.35 0.09 0.346 0.087 1.14 3.33 

15 0.302 0.07 0.309 0.0723 2.32 3.29 

16 0.262 0.05 0.268 0.0533 2.29 6.60 

17 0.228 0.04 0.22 0.0391 3.51 2.25 

18 0.199 0.03 0.204 0.0295 2.51 1.67 

19 0.174 0.02 0.177 0.0194 1.72 3.00 

20 0.153 0.02 0.156 0.0204 1.96 2.00 

Average Differences 1.47 2.33 

 

CONCLUSION 

A new model has been derived based on four coefficient model and marching technique that capable of 

modeling heptane plus characterization with simple calculations. Model testing using field data has been 

successfully conducted to present low level of difference from experimental data.  

NOMENCLATURE 

AAD : Absolute Average Deviation 

A,B : Constants in Pedersen Model 

Cn : Mole Percent of an SCN Number in Proposed Model 

MW : Molecular Weight 

P : Pressure, psi 

PVT : Pressure Volume and Temperature 

R,S : Coefficients in Proposed Model 

SCN : Single Carbon Number 

Zn : Mole Percent of an SCN fraction in a Hydrocarbon Mixture 

Greek Letters 

Α,β,η : Coefficients of The Gamma Distribution Function 

Γ : Gamma Function 
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Appendix A 

Table 3-PVT Composition Used for Model Building 

\ 

 SCN %Mole 

Group PL1 PL2 PL3 PL4 PL5 PL6 CL1 CL2 CL3 

7 0.561 0.458 0.508 0.346 0.368 0.307 0.588 0.353 0.39 

8 0.789 0.583 0.652 0.444 0.471 0.38 0.729 0.457 0.486 

9 0.491 0.319 0.353 0.308 0.297 0.205 0.491 0.304 0.322 

10 0.354 0.245 0.286 0.231 0.208 0.157 0.327 0.222 0.225 

11 0.267 0.196 0.194 0.165 0.141 0.133 0.246 0.162 0.171 

12 0.176 0.127 0.134 0.108 0.089 0.071 0.156 0.118 0.115 

13 0.197 0.148 0.146 0.122 0.101 0.079 0.169 0.129 0.123 

14 0.17 0.105 0.121 0.095 0.079 0.062 0.151 0.101 0.106 

15 0.144 0.093 0.103 0.084 0.069 0.053 0.121 0.088 0.093 

16 0.119 0.074 0.077 0.068 0.052 0.039 0.098 0.068 0.069 

17 0.104 0.066 0.065 0.059 0.045 0.032 0.085 0.059 0.059 

18 0.099 0.054 0.052 0.049 0.037 0.028 0.076 0.052 0.054 

19 0.08 0.045 0.041 0.04 0.031 0.021 0.064 0.044 0.043 

20+ 0.373 0.24 0.187 0.149 0.134 0.069 0.344 0.232 0.222 

SCN %Mole 

Group CL4 CL5 CL6 K1/K4 Ghawar Al-Meshari 

1 

Al-Meshari 

2 

Pedersen 

I 

Pedersen 

II 

7 0.523 0.414 0.294 0.486 0.532 1.6 1.5 4.39 3.33 

8 0.633 0.504 0.367 0.361 0.41 1.31 1.65 4.71 4.06 

9 0.352 0.31 0.234 0.266 0.317 1.31 1.36 3.21 2.76 

10 0.238 0.215 0.159 0.201 0.254 1.12 1.16 1.76 1.33 

11 0.196 0.162 0.112 0.153 0.206 0.86 0.91 1.72 1.79 

12 0.11 0.1 0.07 0.116 0.169 0.7 0.75 1.74 1.7 

13 0.123 0.112 0.08 0.089 0.14 0.63 0.7 1.74 1.81 

14 0.099 0.09 0.056 0.068 0.117 0.57 0.61 1.35 1.46 

15 0.086 0.076 0.046 0.052 0.097 0.51 0.59 1.34 1.49 

16 0.066 0.064 0.039 0.04 0.081 0.43 0.48 1.06 1.08 

17 0.055 0.056 0.032 

0.073 

 

0.171 

 

0.38 0.43 1.02 1.13 

18 0.047 0.047 0.027 0.35 0.41 1 0.99 

19 0.039 0.039 0.019 0.32 0.37 0.9 0.88 

20+ 0.184 0.218 0.057 0.063 0.186 4.71 4.74 0.918 7.64 


